Gaussian Mixture Models

General Principles

To discover group structures or clusters in data, we can use a Gaussian Mixture Model
(GMM). This is a parametric clustering method. A GMM assumes that the data is generated
from a mixture of a pre-specified number (K) of different Gaussian distributions. The
model’s goal is to figure out:

1. The properties of each of the K clusters: For each of the K clusters, it estimates its
center (mean ) and its shape/spread (covariance X).

2. The mixture weights: It estimates the proportion of the data that belongs to each
cluster.

3. The assignment of each data point: It determines the probability of each data point
belonging to each of the K clusters.

Considerations

O Caution

« A GMM is a Bayesian model that considers uncertainty in all its parameters,
except for the number of clusters, K, which must be fixed in advance.

e The key parameters and their priors are:

— Number of Clusters K: This is a fixed hyperparameter that you must
choose before running the model. Choosing the right X often involves run-
ning the model multiple times and using model comparison criteria (like cross-
validation, AIC, or BIC).

— Cluster Weights w: These are the probabilities of drawing a data point from
any given cluster. Since there are a fixed number K of them and they must sum
to 1, they are typically given a Dirichlet prior. A symmetric Dirichlet prior
(e.g., Dirichlet(1, 1, ..., 1)) represents an initial belief that all clusters
are equally likely.



— **Cluster Parameters (u, X): Each of the K clusters has a mean p and a
covariance matrix . We place priors on these to define our beliefs about their
plausible values.

e Like the DPMM, the model is often implemented in its marginalized form . Instead
of explicitly assigning each data point to a cluster, we integrate out this choice.
This creates a smoother probability surface for the inference algorithm to explore,
leading to much more efficient computation.

e To increase accuracy we run a k-means algorithm to initialize the cluster mean
priors.

Example

Below is an example of a GMM implemented in BI. The goal is to cluster a synthetic dataset
into a pre-specified K=4 groups.

Python

from BI import bi, jnp
from sklearn.datasets import make_blobs

m = bi()

# Generate synthetic data

data, true_labels = make_blobs(
n_samples=500, centers=8, cluster_std=0.8,
center_box=(-10,10), random_state=101

# The model

def gmm(data, K, initial _means): # Here K is the *exact* number of clusters
D = data.shape[1] # Number of features
alpha_prior = 0.5 * jnp.ones(K)
w = m.dist.dirichlet(concentration=alpha_prior, name='weights')

with m.dist.plate("components", K): # Use fixed K
mu = m.dist.multivariate_normal(loc=initial_means, covariance_matrix=0.1*jnp.eye(D),
sigma = m.dist.half_cauchy(l, shape=(D,), event=1, name='sigma')
Lcorr = m.dist.lkj_cholesky(dimension=D, concentration=1.0, name='Lcorr')



scale_tril = sigmal..., None] * Lcorr

m.dist.mixture_same_family(
mixing distribution=m.dist.categorical (probs=w, create_obj=True),
component_distribution=m.dist.multivariate_normal(loc=mu, scale_tril=scale_tril, cre:
name="obs",
obs=data

Kmeans clustering do initiate the means

.m1.KMEANS (data, n_clusters=8)

.data_on_model = {"data": data,"K": 8 }
.data_on_model['initial means'] = m.ml.results['centroids']

B B B #

=

.fit(gmm) # Optimize model parameters through MCMC sampling
.plot (X=data,sampler=m.sampler) # Prebuild plot function for GMM
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jax.local_device_count 16
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This function is still in development. Use it with caution.
This function is still in development. Use it with caution.
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Julia

OBI function gmm(data, K, initial_means)
D = data.shape[1]
alpha_prior = 0.5 * jnp.ones(K)
w = m.dist.dirichlet(concentration=alpha_prior, name="weights")

# We capture the output of the pywith block
# The block returns a tuple (mu, scale_tril)
mu, scale_tril = pywith(m.dist.plate("components", K)) do _



mu_inner = m.dist.multivariate normal(
loc=initial_means,
covariance_matrix=0.1*jnp.eye(D),

name="mu"
)
sigma = m.dist.half_cauchy(l, shape=(D,), event=1, name="sigma")
Lcorr = m.dist.lkj_cholesky(dimension=D, concentration=1.0, name="Lcorr")

# FIX: Use expand_dims instead of slicing
scale_tril_inner = jnp.expand_dims(sigma, -1) * Lcorr

# Return them so they are available outside
(mu_inner, scale_tril_inner)
end

m.dist.mixture_same_family(
mixing distribution=m.dist.categorical(probs=w, create_obj=true),
component_distribution=m.dist.multivariate_normal(loc=mu, scale_tril=scale_tril, cre
name="obs",

obs=data
)
end
# Run
m.fit(gmm)

m. summary ()

Mathematical Details

This section describes the generative process for a GMM.
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opy,,q) ~ HalfCauchy(1)

Q, ~ LKJ(2)

z; ~ Categorical(m)

7 ~ Dirichlet (0.5, ...,0.5)

Where :

Y:.
[4,1]
: is the i-th observation of a D-dimensional data array.
Yii,p)
Flke,1]
: is the k-th parameter vector of dimension D.
Mk,
Ay
: is a prior for the k-th mean vector as derived by a KMFEANS clustering algo-
A
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rithm.

B is the prior covariance of the cluster means, and is setup as a diagonal matrix with
0.1 along the diagonal.

Y, is the DxD covariance matrix of the k-th cluster (it is composed from o, and €}).

Diag(o},) is a diagonal matrix whose diagonal entries are the standard deviations:

O—[k,l} 0 0

. 0 o :
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o}, is a D-vector of standard deviations for the k-th cluster where each element, d, has a
half-cauchy prior.

Q. is a correlation matrix for the k-th cluster.
z; is a latent variable that maps observation 7 to cluster k.

7 is a vector of K cluster weights.



Where :

Y:.

[i,1]
. : is the ¢-th observation of a D-dimensional data array.
Yji,p)

Hik,1)

. : is the k-th parameter vector of dimension D.

ik, D)

Ak
: is a prior for the k-th mean vector as derived by a KMFEANS clustering algo-
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rithm.

e B is the prior covariance of the cluster means, and is setup as a diagonal matrix with
0.1 along the diagonal.

o X, is the DxD covariance matrix of the k-th cluster (it is composed from o, and €2},).
e 0, is a diagonal matrix of standard deviations for the k-th cluster.

o (), is a correlation matrix for the k-th cluster.

e 2, is a latent variable that maps observation ¢ to cluster k.

e 7 is a vector of K cluster weights.

Notes

1 Note

The primary challenge of the GMM compared to the DPMM is the need to manually
specify the number of clusters K. If the chosen K is too small, the model may merge
distinct clusters. If K is too large, it may split natural clusters into meaningless sub-
groups. Therefore, applying a GMM often involves an outer loop of model selection
where one fits the model for a range of K values and uses a scoring metric to select the
best one.
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