
Gaussian Mixture Models

General Principles

To discover group structures or clusters in data, we can use a Gaussian Mixture Model
(GMM). This is a parametric clustering method. A GMM assumes that the data is generated
from a mixture of a pre-specified number (K) of different Gaussian distributions. The
model’s goal is to figure out:

1. The properties of each of the K clusters: For each of the K clusters, it estimates its
center (mean 𝜇) and its shape/spread (covariance Σ).

2. The mixture weights: It estimates the proportion of the data that belongs to each
cluster.

3. The assignment of each data point: It determines the probability of each data point
belonging to each of the 𝐾 clusters.

Considerations

Caution

• A GMM is a Bayesian model � that considers uncertainty in all its parameters,
except for the number of clusters, 𝐾, which must be fixed in advance.

• The key parameters and their priors are:

– Number of Clusters 𝐾: This is a fixed hyperparameter that you must
choose before running the model. Choosing the right K often involves run-
ning the model multiple times and using model comparison criteria (like cross-
validation, AIC, or BIC).

– Cluster Weights w: These are the probabilities of drawing a data point from
any given cluster. Since there are a fixed number K of them and they must sum
to 1, they are typically given a Dirichlet prior. A symmetric Dirichlet prior
(e.g., Dirichlet(1, 1, ..., 1)) represents an initial belief that all clusters
are equally likely.

1

– **Cluster Parameters (𝜇, Σ): Each of the K clusters has a mean 𝜇 and a
covariance matrix Σ. We place priors on these to define our beliefs about their
plausible values.

• Like the DPMM, the model is often implemented in its marginalized form . Instead
of explicitly assigning each data point to a cluster, we integrate out this choice.
This creates a smoother probability surface for the inference algorithm to explore,
leading to much more efficient computation.

• To increase accuracy we run a k-means algorithm to initialize the cluster mean
priors.

Example

Below is an example of a GMM implemented in BI. The goal is to cluster a synthetic dataset
into a pre-specified K=4 groups.

Python

from BI import bi, jnp
from sklearn.datasets import make_blobs

m = bi()
Generate synthetic data
data, true_labels = make_blobs(

n_samples=500, centers=8, cluster_std=0.8,
center_box=(-10,10), random_state=101

)

The model
def gmm(data, K, initial_means): # Here K is the *exact* number of clusters

D = data.shape[1] # Number of features
alpha_prior = 0.5 * jnp.ones(K)
w = m.dist.dirichlet(concentration=alpha_prior, name='weights')

with m.dist.plate("components", K): # Use fixed K
mu = m.dist.multivariate_normal(loc=initial_means, covariance_matrix=0.1*jnp.eye(D), name='mu')
sigma = m.dist.half_cauchy(1, shape=(D,), event=1, name='sigma')
Lcorr = m.dist.lkj_cholesky(dimension=D, concentration=1.0, name='Lcorr')

2

scale_tril = sigma[..., None] * Lcorr

m.dist.mixture_same_family(
mixing_distribution=m.dist.categorical(probs=w, create_obj=True),
component_distribution=m.dist.multivariate_normal(loc=mu, scale_tril=scale_tril, create_obj=True),
name="obs",
obs=data

)

Kmeans clustering do initiate the means
m.ml.KMEANS(data, n_clusters=8)
m.data_on_model = {"data": data,"K": 8 }
m.data_on_model['initial_means'] = m.ml.results['centroids']

m.fit(gmm) # Optimize model parameters through MCMC sampling
m.plot(X=data,sampler=m.sampler) # Prebuild plot function for GMM

jax.local_device_count 16

0%| | 0/1000 [00:00<?, ?it/s]warmup: 0%| | 1/1000 [00:04<1:22:50, 4.98s/it, 1 steps of size 2.34e+00. acc. prob=0.00]warmup: 2%|� | 24/1000 [00:05<02:27, 6.60it/s, 31 steps of size 3.67e-02. acc. prob=0.72]warmup: 4%|� | 37/1000 [00:05<01:26, 11.09it/s, 31 steps of size 5.77e-02. acc. prob=0.75]warmup: 6%|� | 55/1000 [00:05<00:48, 19.64it/s, 15 steps of size 5.47e-02. acc. prob=0.76]warmup: 7%|� | 72/1000 [00:05<00:31, 29.76it/s, 7 steps of size 4.78e-02. acc. prob=0.76] warmup: 9%|� | 94/1000 [00:05<00:19, 46.46it/s, 7 steps of size 2.43e-02. acc. prob=0.77]warmup: 11%|� | 111/1000 [00:05<00:15, 59.04it/s, 15 steps of size 5.94e-01. acc. prob=0.77]warmup: 13%|�� | 131/1000 [00:05<00:11, 77.83it/s, 15 steps of size 5.63e-01. acc. prob=0.78]warmup: 15%|�� | 151/1000 [00:05<00:08, 97.24it/s, 7 steps of size 5.61e+00. acc. prob=0.78] warmup: 17%|�� | 169/1000 [00:05<00:07, 107.88it/s, 7 steps of size 7.50e-01. acc. prob=0.78]warmup: 19%|�� | 186/1000 [00:06<00:06, 117.90it/s, 15 steps of size 4.28e-01. acc. prob=0.78]warmup: 20%|�� | 203/1000 [00:06<00:06, 129.10it/s, 15 steps of size 4.00e-01. acc. prob=0.78]warmup: 22%|��� | 220/1000 [00:06<00:05, 135.47it/s, 15 steps of size 4.38e-01. acc. prob=0.78]warmup: 24%|��� | 240/1000 [00:06<00:05, 150.73it/s, 15 steps of size 6.55e-01. acc. prob=0.78]warmup: 26%|��� | 260/1000 [00:06<00:04, 161.46it/s, 15 steps of size 2.40e-01. acc. prob=0.78]warmup: 28%|��� | 278/1000 [00:06<00:04, 146.47it/s, 15 steps of size 4.64e-01. acc. prob=0.78]warmup: 30%|��� | 295/1000 [00:06<00:04, 149.63it/s, 15 steps of size 4.13e-01. acc. prob=0.78]warmup: 31%|��� | 311/1000 [00:06<00:04, 149.81it/s, 7 steps of size 1.02e+00. acc. prob=0.78] warmup: 33%|���� | 330/1000 [00:06<00:04, 160.28it/s, 15 steps of size 4.61e-01. acc. prob=0.78]warmup: 35%|���� | 353/1000 [00:07<00:03, 178.72it/s, 15 steps of size 3.73e-01. acc. prob=0.78]warmup: 37%|���� | 374/1000 [00:07<00:03, 186.15it/s, 15 steps of size 4.87e-01. acc. prob=0.78]warmup: 39%|���� | 394/1000 [00:07<00:03, 178.01it/s, 7 steps of size 6.59e-01. acc. prob=0.79] warmup: 41%|����� | 413/1000 [00:07<00:03, 174.99it/s, 7 steps of size 3.83e-01. acc. prob=0.79]warmup: 44%|����� | 436/1000 [00:07<00:02, 189.70it/s, 15 steps of size 5.15e-01. acc. prob=0.79]warmup: 46%|����� | 461/1000 [00:07<00:02, 205.94it/s, 15 steps of size 5.06e-01. acc. prob=0.79]warmup: 48%|����� | 482/1000 [00:07<00:02, 201.47it/s, 7 steps of size 5.55e-01. acc. prob=0.79] sample: 50%|����� | 503/1000 [00:07<00:02, 176.35it/s, 7 steps of size 4.07e-01. acc. prob=0.95]sample: 52%|������ | 522/1000 [00:08<00:02, 161.81it/s, 15 steps of size 4.07e-01. acc. prob=0.87]sample: 54%|������ | 539/1000 [00:08<00:03, 148.39it/s, 15 steps of size 4.07e-01. acc. prob=0.89]sample: 56%|������ | 555/1000 [00:08<00:02, 150.02it/s, 7 steps of size 4.07e-01. acc. prob=0.89] sample: 57%|������ | 574/1000 [00:08<00:02, 159.40it/s, 7 steps of size 4.07e-01. acc. prob=0.90]sample: 60%|������ | 595/1000 [00:08<00:02, 172.66it/s, 15 steps of size 4.07e-01. acc. prob=0.89]sample: 61%|������� | 613/1000 [00:08<00:02, 172.54it/s, 15 steps of size 4.07e-01. acc. prob=0.90]sample: 63%|������� | 631/1000 [00:08<00:02, 166.12it/s, 7 steps of size 4.07e-01. acc. prob=0.90] sample: 65%|������� | 649/1000 [00:08<00:02, 168.73it/s, 15 steps of size 4.07e-01. acc. prob=0.90]sample: 67%|������� | 667/1000 [00:08<00:01, 167.18it/s, 15 steps of size 4.07e-01. acc. prob=0.90]sample: 68%|������� | 685/1000 [00:09<00:01, 169.12it/s, 7 steps of size 4.07e-01. acc. prob=0.90] sample: 70%|������� | 703/1000 [00:09<00:01, 156.65it/s, 15 steps of size 4.07e-01. acc. prob=0.90]sample: 72%|�������� | 719/1000 [00:09<00:01, 154.99it/s, 15 steps of size 4.07e-01. acc. prob=0.90]sample: 74%|�������� | 737/1000 [00:09<00:01, 160.59it/s, 7 steps of size 4.07e-01. acc. prob=0.90] sample: 76%|�������� | 760/1000 [00:09<00:01, 177.84it/s, 15 steps of size 4.07e-01. acc. prob=0.90]sample: 78%|�������� | 780/1000 [00:09<00:01, 182.80it/s, 15 steps of size 4.07e-01. acc. prob=0.90]sample: 80%|�������� | 800/1000 [00:09<00:01, 187.12it/s, 7 steps of size 4.07e-01. acc. prob=0.90] sample: 82%|��������� | 819/1000 [00:09<00:00, 182.37it/s, 15 steps of size 4.07e-01. acc. prob=0.89]sample: 84%|��������� | 838/1000 [00:09<00:00, 173.91it/s, 15 steps of size 4.07e-01. acc. prob=0.89]sample: 86%|��������� | 856/1000 [00:10<00:00, 164.11it/s, 7 steps of size 4.07e-01. acc. prob=0.90] sample: 87%|��������� | 873/1000 [00:10<00:00, 157.15it/s, 15 steps of size 4.07e-01. acc. prob=0.90]sample: 89%|��������� | 892/1000 [00:10<00:00, 164.33it/s, 7 steps of size 4.07e-01. acc. prob=0.90] sample: 91%|��������� | 909/1000 [00:10<00:00, 161.39it/s, 7 steps of size 4.07e-01. acc. prob=0.90]sample: 93%|����������| 926/1000 [00:10<00:00, 160.06it/s, 7 steps of size 4.07e-01. acc. prob=0.90]sample: 94%|����������| 945/1000 [00:10<00:00, 168.20it/s, 15 steps of size 4.07e-01. acc. prob=0.90]sample: 97%|����������| 967/1000 [00:10<00:00, 181.87it/s, 15 steps of size 4.07e-01. acc. prob=0.90]sample: 99%|����������| 986/1000 [00:10<00:00, 180.68it/s, 15 steps of size 4.07e-01. acc. prob=0.89]sample: 100%|����������| 1000/1000 [00:10<00:00, 92.04it/s, 15 steps of size 4.07e-01. acc. prob=0.90]

� This function is still in development. Use it with caution. �
� This function is still in development. Use it with caution. �

3

4

R

Julia

@BI function gmm(data, K, initial_means)
D = data.shape[1]
alpha_prior = 0.5 * jnp.ones(K)
w = m.dist.dirichlet(concentration=alpha_prior, name="weights")

We capture the output of the pywith block
The block returns a tuple (mu, scale_tril)
mu, scale_tril = pywith(m.dist.plate("components", K)) do _

5

mu_inner = m.dist.multivariate_normal(
loc=initial_means,
covariance_matrix=0.1*jnp.eye(D),
name="mu"

)

sigma = m.dist.half_cauchy(1, shape=(D,), event=1, name="sigma")
Lcorr = m.dist.lkj_cholesky(dimension=D, concentration=1.0, name="Lcorr")

FIX: Use expand_dims instead of slicing
scale_tril_inner = jnp.expand_dims(sigma, -1) * Lcorr

Return them so they are available outside
(mu_inner, scale_tril_inner)

end

m.dist.mixture_same_family(
mixing_distribution=m.dist.categorical(probs=w, create_obj=true),
component_distribution=m.dist.multivariate_normal(loc=mu, scale_tril=scale_tril, create_obj=true),
name="obs",
obs=data

)
end

Run
m.fit(gmm)
m.summary()

Mathematical Details

This section describes the generative process for a GMM.

⎛⎜
⎝

𝑌𝑖,1
⋮

𝑌𝑖,𝐷

⎞⎟
⎠

∼ MVN⎛⎜⎜
⎝

⎛⎜⎜
⎝

𝜇𝑧𝑖,1
⋮

𝜇𝑧𝑖,𝐷

⎞⎟⎟
⎠

, Σ𝑧𝑖
⎞⎟⎟
⎠

⎛⎜
⎝

𝜇𝑘,1
⋮

𝜇𝑘,𝐷

⎞⎟
⎠

∼ MVN⎛⎜
⎝

⎛⎜
⎝

𝐴𝑘,1
⋮

𝐴𝑘,𝐷

⎞⎟
⎠

, 𝐵⎞⎟
⎠

Σ𝑘 = Diag(𝜎𝑘)Ω𝑘Diag(𝜎𝑘)

6

𝜎[𝑘,𝑑] ∼ HalfCauchy(1)

Ω𝑘 ∼ LKJ(2)

𝑧𝑖 ∼ Categorical(𝜋)

𝜋 ∼ Dirichlet(0.5, … , 0.5)

Where :

• ⎛⎜
⎝

𝑌[𝑖,1]
⋮

𝑌[𝑖,𝐷]

⎞⎟
⎠

is the 𝑖-th observation of a D-dimensional data array.

• ⎛⎜
⎝

𝜇[𝑘,1]
⋮

𝜇[𝑘,𝐷]

⎞⎟
⎠

is the 𝑘-th parameter vector of dimension D.

• ⎛⎜
⎝

𝐴[𝑘,1]
⋮

𝐴[𝑘,𝐷]

⎞⎟
⎠

is a prior for the 𝑘-th mean vector as derived by a KMEANS clustering algo-

rithm.

• 𝐵 is the prior covariance of the cluster means, and is setup as a diagonal matrix with
0.1 along the diagonal.

• Σ𝑘 is the DxD covariance matrix of the 𝑘-th cluster (it is composed from 𝜎𝑘 and Ω𝑘).

• Diag(𝜎𝑘) is a diagonal matrix whose diagonal entries are the standard deviations:

Diag(𝜎𝑘) =
⎛⎜⎜⎜⎜
⎝

𝜎[𝑘,1] 0 ⋯ 0
0 𝜎[𝑘,2] ⋮
⋮ ⋱ 0
0 ⋯ 0 𝜎[𝑘,𝐷]

⎞⎟⎟⎟⎟
⎠

.

• 𝜎𝑘 is a 𝐷-vector of standard deviations for the 𝑘-th cluster where each element, 𝑑, has a
half-cauchy prior.

• Ω𝑘 is a correlation matrix for the 𝑘-th cluster.

• 𝑧𝑖 is a latent variable that maps observation 𝑖 to cluster 𝑘.
• 𝜋 is a vector of 𝐾 cluster weights.

7

Where :

• ⎛⎜
⎝

𝑌[𝑖,1]
⋮

𝑌[𝑖,𝐷]

⎞⎟
⎠

is the 𝑖-th observation of a D-dimensional data array.

• ⎛⎜
⎝

𝜇[𝑘,1]
⋮

𝜇[𝑘,𝐷]

⎞⎟
⎠

is the 𝑘-th parameter vector of dimension D.

• ⎛⎜
⎝

𝐴[𝑘,1]
⋮

𝐴[𝑘,𝐷]

⎞⎟
⎠

is a prior for the 𝑘-th mean vector as derived by a KMEANS clustering algo-

rithm.

• 𝐵 is the prior covariance of the cluster means, and is setup as a diagonal matrix with
0.1 along the diagonal.

• Σ𝑘 is the DxD covariance matrix of the 𝑘-th cluster (it is composed from 𝜎𝑘 and Ω𝑘).

• 𝜎𝑘 is a diagonal matrix of standard deviations for the 𝑘-th cluster.

• Ω𝑘 is a correlation matrix for the 𝑘-th cluster.

• 𝑧𝑖 is a latent variable that maps observation 𝑖 to cluster 𝑘.
• 𝜋 is a vector of 𝐾 cluster weights.

Notes

Note

The primary challenge of the GMM compared to the DPMM is the need to manually
specify the number of clusters K. If the chosen K is too small, the model may merge
distinct clusters. If K is too large, it may split natural clusters into meaningless sub-
groups. Therefore, applying a GMM often involves an outer loop of model selection
where one fits the model for a range of K values and uses a scoring metric to select the
best one.

Reference(s)

C. M. Bishop (2006). Pattern Recognition and Machine Learning. Springer. (Chapter 9)

8

	General Principles
	Considerations
	Example
	Python
	R
	Julia
	Mathematical Details
	Notes
	Reference(s)

