Dirichlet Model

General Principles

To model the relationship between a vector outcome variable in which each element of the vector is a frequency from a set of more than two categories and one or more independent variables, we can use a *Dirichlet* model.

Considerations

Note

• We have the same considerations as for the Multinomial model.

Example

Python

Mathematical Details

We can model a vector of frequencies using a Dirichlet distribution. For an outcome variable Y_i with K categories, the Dirichlet likelihood function is:

$$Y_i \sim \text{Dirichlet}(\theta_i \kappa) \\ \theta_i = \text{Softmax}(\phi_i) \\ \phi_{[i,1]} = \alpha_1 + \beta_1 \\ X_i \\ \phi_{[i,2]} = \alpha_2 + \beta_2 \\ X_i \\ \dots \\ \phi_{[i,k]} = 0 \\ \kappa \sim \text{Exponential}(1) \\ \alpha_k \sim \text{Normalized}(1) \\ \alpha_k \sim \text{Norma$$

Where:

- Y_i is the outcome simplex for observation i.
- κ is the concentration parameter, it controls the prior weight on each category.
- θ_i is a vector unique to each observation, i, which gives the probability of observing i in category k.
- ϕ_i give the linear model for each of the k categories. Note that we use the softmax function to ensure that that the probabilities θ_i form a simplex.
- Each element of ϕ_i is obtained by applying a linear regression model with its own respective intercept α_k and slope coefficient β_k . To ensure the model is identifiable, one category, K, is arbitrarily chosen as a reference or baseline category. The linear predictor for this reference category is set to zero. The coefficients for the other categories then represent the change in the log-odds of being in that category versus the reference category.

Reference(s)